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Abstract

This seminar paper evaluates four classical Component Substitution
(CS) pansharpening methods—Brovey, PCA, IHS, and Gram-Schmidt—
using urban satellite imagery of Naples and New York from the PAirMAx
dataset. The goal is to assess their ability to enhance spatial detail while
preserving spectral information. Quantitative metrics (PSNR, SSIM, cor-
relation, spectral distortion, runtime) and visual inspection were used for
comparison. Results show that Gram-Schmidt consistently achieves the
best spectral and structural performance, while Brovey offers high visual
quality and speed. PCA excels at edge preservation, and THS performs
the weakest overall. Findings underscore the trade-offs in pansharpening
and highlight the importance of method selection based on application
needs. Future work may explore deep learning approaches.
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1 Introduction

Satellites and remote sensing have become increasingly popular in the last few
decades. With evolving technological sophistication, we are now able to monitor
the Earth better and at finer scales, both in terms of detail and frequency. This
has opened up new possibilities for tracking environmental changes, managing
resources, and responding to natural disasters, all with a level of spatial and
temporal resolution that was previously not possible.

In remote sensing, high-resolution (HR) or very high-resolution (VHR) satellite
imagery often lacks detailed spectral information, while data with rich spectral
detail may have lower spatial resolution. Pansharpening aims to bridge this gap
by creating an HR image that combines the best of both worlds: the detailed
spatial information from an HR panchromatic (PAN) image and the rich spec-
tral information from a lower-resolution (LR) multispectral (MS) image. The
resulting fused image, an HR MS image, enhances the ability to analyze and
interpret the observed scene.

Pansharpening is an important pre-processing step in remote sensing, with di-
verse applications in areas like change detection (Bovolo et al. 2009), urban map-
ping (Xu et al. 2017), environmental monitoring (Wang et al. 2019), anomaly
detection (Qu et al. 2017), and more. By improving the visual quality and spa-
tial detail of MS images, pansharpening enhances feature recognition and sup-
ports more accurate classification, interpretation, and decision-making across
various domains.

With so many pansharpening algorithms in the literature and practice, and
more advancements in the recent past, we come to the question: which ones
work best? This is also important when it comes to answering scientific ques-
tions or implementing strategies based on the applications we are interested
in. For the scope of this class, I focus on a subset of these methods, specifi-
cally Component Substitution (CS) techniques. In my seminar paper, I carry
out a comparative analysis of some commonly used CS-based pansharpening
approaches: the Brovey Transform, Principal Component Analysis (PCA), In-
tensity Hue Saturation (IHS), and Gram-Schmidt (GS). How these methods
work and how they perform will be discussed in the sections that follow. The
rest of this paper is structured as follows: Section 2 covers the basics of CS-based
pansharpening methods like Brovey, PCA, THS, and Gram-Schmidt. Section 3
describes the datasets, evaluation criteria, and implementation details. Section
4 shows the visual and numerical results. Section 5 discusses the main findings,
trade-offs, and which methods work best. Finally, Section 6 wraps up with a
conclusion.

2 Theory

Pansharpening, short for panchromatic sharpening, is a technique used to fuse
an HR PAN image with an LR MS image to generate an output that maintains
both high spatial detail and rich spectral information. Typically, PAN images
offer finer spatial resolution, whereas MS images provide greater spectral rich-



Sen July 30, 2025

ness across several wavelength bands.

In many remote sensing applications, accurate spatial co-registration is a crit-
ical prerequisite to ensure proper pixel alignment across datasets; without it,
analyses like change detection or image fusion may produce misleading results
due to spatial mismatches (Townshend et al. 1992; Cinquini 2020). However,
in pansharpening, this step is often unnecessary, as PAN and MS images are
usually captured simultaneously by sensors on the same platform, resulting in
inherently aligned data (Vivone et al. 2014).

While pansharpening is most commonly associated with fusing PAN and MS
data, its applications have expanded into the hyperspectral domain. Research
has shown that methods developed for MS pansharpening can be extended to
hyperspectral data, enabling similar enhancement of spatial resolution while
preserving detailed spectral characteristics (Loncan et al. 2015).

There have been several groupings or classifications of pansharpening meth-
ods (Meng et al. 2019), but these authors more or less categorize them into
component substitution (CS), multiresolution analysis (MRA), and variational
optimization (VO) based methods. There have also been hybrid or machine
learning, specifically deep learning based pansharpening techniques, and these
are considered as a new generation of methods by the authors. CS methods
replace specific bands in the LR MS image with information from the HR PAN
image. MRA methods decompose the MS and PAN images into different spatial
frequency components and then merge the most informative components from
each image to create the final HR product. VO methods use mathematical op-
timization techniques to create an HR image that best satisfies certain criteria,
such as matching the statistical properties of the original MS image.

Since this seminar paper focuses on comparing different CS methods, the next
subsection will introduce and detail the individual algorithms under this cate-

gory.

2.1 Component Substitution (CS) Methods
2.1.1 Brovey Transform

The Brovey Transform method combines MS and PAN bands using a ratio-
based approach: each MS band is scaled by the PAN image and normalized by
the sum of the MS bands. This helps preserve spectral balance while injecting
spatial resolution (Vrabel 1996; Sarp 2014). The method is simple but best
suited for RGB images, as it assumes spectral overlap between PAN and MS
bands (Bovolo et al. 2009).

2.1.2 Principal Component Analysis (PCA)

PCA is a statistical method that transforms correlated MS bands into uncorre-
lated components. For pansharpening, the first principal component PC; (this
holds most of the spatial variance) is replaced by the PAN image. After his-
togram matching, an inverse PCA is applied to reconstruct an HR MS image
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Algorithm 1 Brovey Transform for Pansharpening
Require: Multispectral bands M Sy, M S, ..., M S,,, Panchromatic image PAN

1: for each pixel (4,5) do

2. Compute total intensity: T = >"}_; M Si(i, j)
33 fork=1tondo

4 MSHE(i j) = MSi(i,5)T - PAN(i, )

5:  end for

6: end for

7: return Fused high-resolution multispectral image M ST %

(Chavez et al. 1991; Shettigara 1992; Vivone et al. 2014). While it works with
any number of bands and generally preserves spectral information, performance
depends on the correlation between MS and PAN data.

Algorithm 2 PCA-based Pansharpening

Require: Multispectral image M.S, Panchromatic image PAN
: Apply PCA to M S to get components PCy, PCs, ..., PC,
Match histogram of PAN to PCy

Replace PC; with histogram-matched PAN

Apply inverse PCA to get fused image M SHE

return MSHTE

2.1.3 Intensity-Hue-Saturation (IHS)

The THS method converts RGB bands into intensity, hue, and saturation. The
PAN image replaces the intensity component, and then an inverse transform
is applied. This enhances spatial resolution while preserving color information
(Carper et al. 1990; Sarp 2014). However, THS is limited to three bands and
may not work well for datasets with more than three spectral bands or when
NIR is included (Vivone et al. 2014).

Algorithm 3 THS-based Pansharpening

Require: RGB bands R, G, B, Panchromatic image PAN
: Convert (R,G,B) to (I,H,S5)

Match histogram of PAN to intensity

Replace I with matched PAN

Convert (I, H,S) back to (R, G, B) to get fused image
return Pansharpened RGB image

2.1.4 Gram-Schmidt (GS)

The GS approach begins by simulating an LR PAN image from the MS data,
often by averaging. A GS transformation is applied, and the simulated PAN is
replaced with the real PAN image. After histogram matching, the inverse GS
transform yields the pansharpened output (Laben & Brower 2000; Sarp 2014).
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This method performs well due to its mathematical rigor and is widely used in
software such as ENVI (Vivone et al. 2014).

Algorithm 4 GS-based Pansharpening

Require: Multispectral image M.S, Panchromatic image PAN

: Simulate low-res PAN image: PANg;, = f(MS)

Apply Gram-Schmidt transform using PANg;,, to get components
Match histogram of PAN to PANg;m

Replace PANg;,, with matched PAN

Apply inverse Gram-Schmidt transform

return Fused high-resolution multispectral image M

SHR

3 Methods and Data

3.1 Dataset

For this implementation, I use the PAirMAx dataset introduced by Vivone et al.
(2021), which is meant for evaluating and comparing pansharpening algorithms.
It includes 14 pairs of PAN and MS images, collected by different HR satellites
over a variety of landscapes. The dataset provides both original full-resolution
images and reduced-resolution versions that follow Wald’s protocol. Some of the
scenes are from cities like Naples, Stockholm, New York, and Houston, offering
a good mix of environments to test algorithm performance.

3.2 Evaluation criteria

To evaluate the quality of the pansharpened outputs, I use five metrics: PSNR
(Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), correlation,
spectral distortion, and execution time (in seconds).

Following Vivone et al. (2021), two important concepts in evaluating pansharp-
ened products are consistency and synthesis.

e Consistency refers to how well a pansharpened image, when degraded
back to the original MS resolution, matches the original MS image. This
is usually done using a Modulation Transfer Function (MTF) filter to
simulate the sensor characteristics. Though traditionally considered a
necessary check, more recent studies suggest it may also be sufficient for
assessing quality at the MS scale.

e Synthesis, on the other hand, refers to how similar the pansharpened im-
age is to what we would get if there were an ideal MS sensor operating
at PAN resolution. This is typically evaluated via a reduced-resolution
(RR) framework by degrading both MS and PAN, fusing them, and then
comparing the result to the original MS. However, the assumption of scale
invariance in the RR approach doesn’t always hold, and the choice of how
to degrade images can influence the outcome.

Alternatively, the full-resolution (FR) approach assesses quality directly at the
PAN scale, by comparing the spectral fidelity (against the original MS image)
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and spatial details (against PAN). One well-established FR metric is the QNR
(Quality with No Reference) index, which combines spectral and spatial distor-
tion into a single score (Vivone et al. 2021).

Among the metrics I compute, SSIM is particularly useful for gauging structural
similarity. It works by comparing local patterns of luminance, contrast, and
structure between two images (Sarp 2014). Meanwhile, PSNR and correlation
are more traditional pixel-level measures of error and similarity, and spectral
distortion helps quantify how much the fusion process alters the spectral content.

3.3 Implementation

All pansharpening algorithms were implemented in a Jupyter Notebook using
Python. Core libraries include NumPy for numerical operations, Rasterio for
handling satellite image files, scikit-image and scikit-learn for image processing
and PCA, and Matplotlib for visualizations.

Images from PAirMAx are loaded using Rasterio, converted to float32, and nor-
malized using 1st-99th percentile stretching to reduce the impact of outliers.
The MS image is upsampled to PAN resolution using bicubic interpolation with
anti-aliasing.

As has been discussed, the following CS algorithms were implemented:

e Brovey: Computes intensity as the sum of MS bands, then adjusts each
band using the ratio of PAN to intensity, enhancing spatial detail.

e PCA: Applies PCA to the MS image, replaces the first principal compo-
nent with a histogram-matched PAN, and reconstructs via inverse PCA.

e HSV: Converts the RGB bands of MS to HSV, swaps the V (intensity)
with histogram-matched PAN, and converts back to RGB.

e Gram-Schmidt: Simulates a low-res PAN from MS, creates orthogonal
vectors via the Gram-Schmidt process, then replaces the first vector with
PAN before reconstructing.

All outputs are normalized to [0,1]. Evaluation includes average PSNR, SSIM
(for the first 3 bands), correlation with PAN, spectral distortion (mean absolute
difference from reference), and execution time. Results are visualized through
side-by-side comparisons, difference maps, and bar charts.

4 Results

Visual comparisons are shown for two urban scenes: Naples, Italy and New
York City, United States. Each set includes the original LR, RGB composite
(simulated from MS), the pansharpened output, the reference HR MS image
(used as ground truth), and a difference map (absolute difference) between the
pansharpened result and the reference, highlighting residual spatial and spectral
€rTors.
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4.1 Visual results

Difference: Brovey

Brovey (PSNR: 17.97) h-Resolution MS Image (RGB)

Difference: PCA

Difference: IHS

Difference: Gram-Schmidt

Figure 1: Pansharpened outputs of Naples, Italy

Looking at the visual results for both the Naples and New York test cases, all
four pansharpening methods enhance spatial detail relative to the original LR
MS image. In terms of spectral preservation, Gram-Schmidt and PCA main-
tain the most natural color reproduction, especially in Naples, aligning with
their relatively high PSNR, values. Gram-Schmidt stands out in Naples for its
good balance between spatial sharpness and spectral fidelity. In New York,
Brovey performs particularly well visually; it produces crisp details and vivid
contrast while preserving edges, consistent with its high SSIM and correlation
values, although, it tends to introduce slightly oversaturated tones in some
regions. IHS consistently shows the weakest visual performance across both
scenes, with noticeable spectral distortions—such as greenish tints and unnatural
hues—corresponding with its lower PSNR and higher spectral distortion scores.
The difference maps support these observations. IHS exhibits the most pro-
nounced error regions, while Gram-Schmidt shows minimal differences. Brovey
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Difference: Brovey

Low-Resolution MS Image (RGB)
’

Difference: PCA

Difference: IHS

Difference: Gram-Schmidt

Figure 2: Pansharpened outputs of New York City, United States

and PCA show moderate, spatially uniform errors across both locations.
4.2 Quantitative results

Best methods summary:

e Naples: GS leads in PSNR, SSIM, and spectral distortion; PCA best in
correlation; Brovey fastest.

e New York: Brovey best in SSIM, correlation, spectral distortion, and
speed; GS has highest PSNR.
5 Discussion

The results show a trade-off between spatial detail and spectral fidelity across
the tested pansharpening methods. While all methods enhanced spatial reso-
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Table 1: Performance metrics for pansharpening methods

Method PSNR SSIM Corr. Spectral Dist. Time (s)
Naples
Brovey 1570 0.4358  0.9770 0.1218 0.5822
PCA 15.80  0.3850 0.9781 0.1298 0.6302
IHS 14.52  0.3618  0.9431 0.1571 1.3542
Gram-Schmidt 18.07 0.4443 0.9164 0.0950 1.3426
New York
Brovey 22.41 0.8607 0.9897 0.0523 0.0228
PCA 22.09  0.7486  0.9793 0.0616 0.0515
IHS 20.01 0.7175  0.9884 0.0830 0.0838
Gram-Schmidt 22.48  0.7584  0.9762 0.0597 0.0771

lution compared to the LR input, their ability to preserve spectral characteris-
tics varied. Performance-wise, Gram-Schmidt consistently achieved the highest
PSNR and lowest spectral distortion in both test scenes, indicating strong spec-
tral fidelity. PCA excelled in spatial structure preservation (high correlation)
in Naples, whereas Brovey performed best overall in New York, especially in
SSIM, correlation, and speed. IHS underperformed across most metrics.

These outcomes suggest method suitability varies by application:

e Gram-Schmidt is ideal where spectral accuracy is critical (e.g., vegetation,
urban mapping).

e PCA suits edge-sensitive tasks like road detection.

e Brovey may be preferred for quick-look visualizations or applications with
limited resources.

In terms of computational efficiency, Brovey was the fastest method by far, es-
pecially on the larger New York image. Limitations include the small number
of test scenes, which may affect generalizability. Some methods (e.g., IHS) are
sensitive to sensor type and color distortion (Qiu et al. 2009). Further, tradi-
tional methods don’t adapt well to varying scene content. Future improvements
could include adaptive or learning-based methods, such as Convolutional Neu-
ral Networks (CNNs) (Masi et al. 2016; Scarpa et al. 2018), which have shown
results in preserving both spatial and spectral qualities. However, they require
more data and computational resources.

6 Conclusion

The goal of this seminar paper was to explore and compare classical Component
Substitution (CS) methods for pansharpening, assessing both their visual per-
formance and quantitative accuracy across different urban scenes. The analysis
showed that Gram-Schmidt performed best overall with a good balance between
spatial enhancement and spectral fidelity. Brovey stood out for its visual clarity
and computational speed, especially in the New York case. PCA offered effective

11
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edge preservation, while THS showed weaker performance due to color distor-
tions. These findings highlight that method selection should depend on the
application: Gram-Schmidt is preferable when spectral accuracy is key, Brovey
suits fast or visually oriented tasks, and PCA can be useful for structure-focused
analysis. IHS may be less reliable when spectral integrity matters. That said,
pansharpening remains a trade-off: while it enhances resolution, it can also in-
troduce noise and spectral artifacts that degrade data quality. As emphasized
in prior work (Vivone et al. 2014), CS methods are generally more robust than
MRA approaches in handling aliasing and misregistration issues. For future
work, integrating deep learning techniques (Deng et al. 2022; Wei et al. 2017;
Yang et al. 2017) may offer more adaptive and accurate fusion results. Testing
on more varied scenes and including modern methods could further strengthen
our understanding of pansharpening’s role in remote sensing workflows.

AT Use Disclaimer

I used Al tools to proofread my work, generate algorithms for the techniques
used, polish my writing, and come up with a title.
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